Austrian Institute of Construction Engineering Schenkenstrasse 4 | T+43 1 533 65 50 1010 Vienna | Austria | F+43 1 533 64 23

www.oib.or.at | mail@oib.or.at

European Technical Assessment

ETA-13/0840 of 20.12.2021

General part

Technical Assessment Body issuing the Österreichisches Institut für Bautechnik (OIB) **European Technical Assessment** Austrian Institute of Construction Engineering Trade name of the construction product High strength reinforcing system SAS 670 Product family to which the construction Kit for reinforced concrete members with high product belongs strength reinforcing steel but limited tensile utilisation Manufacturer Stahlwerk Annahütte Max Aicher GmbH & Co. KG 83404 Ainring-Hammerau Germany Stahlwerk Annahütte Manufacturing plant Max Aicher GmbH & Co. KG 83404 Ainring-Hammerau Germany This European Technical Assessment 38 pages including Annexes 1 to 21, which form contains an integral part of this assessment. **This European Technical Assessment European Assessment Document** (EAD) 160011-00-0301 - Kit for reinforced is issued in accordance with Regulation (EU) № 305/2011, on the basis of concrete members with high strength reinforcing steel but limited tensile utilisation. European Technical Assessment ETA-13/0840 of This European Technical Assessment

23.06.2020

replaces

Table of contents

GEN	IERAL PART	1
	LE OF CONTENTS	
	IARKS	
SPF	CIFIC PARTS	F
1	TECHNICAL DESCRIPTION OF THE PRODUCT	
1.1	General	
	EL BAR	
1.2	General	
1.3	Strength characteristics of steel bar	
1.4	Welding of steel bar	
1.5	Bending of steel bar	7
ANC	HORAGES AND SPLICES, COMPONENTS	7
1.6	General	7
1.7	End anchorages	7
1.7.	1 General	7
1.7.	2 End anchorage with anchor piece	7
1.7.	3 End anchorage with anchor end plate	7
1.8	Splices	7
1.8.	1 General	7
1.8.	2 Splice with standard coupler	8
1.8.	3 Splice with contact coupler	8
1.8.	4 Splice with turnbuckle	8
1.8.	5 Splice with reducing coupler	8
1.8.	6 Splice with reducing contact coupler	g
1.9	Load transfer to the structure	g
2	SPECIFICATION OF THE INTENDED USE IN ACCORDANCE WITH THE APPLICABLE EUROPEAN ASSESSMENT DOCUMENT (HEREINAFTER EAD)	g
2.1	Intended use	9
2.2	Assumptions	10
2.2.	1 General	10
2.2.	2 Packaging, transport and storage	10
2.2.	3 Design	10
2.2.	3.1 General	10
2.2.	4 Detailing	11
2.2.	5 Installation	12
2.3	Assumed working life	12

nic	3	Perf	ORMANCE OF THE PRODUCT AND REFERENCES TO THE METHODS USED FOR ITS ASSESSMENT	13
tro	3.1	Esse	ntial characteristics	13
electro	3.2	Prod	uct performance	14
Φ	3.2.1	Me	chanical resistance and stability	14
	3.2.1	.1 R	esistance to static load at anchorages and splices	14
\geq	3.2.1	.2 SI	ip at anchorages and splices	14
cop	3.2.1	.3 R	esistance to fatigue at anchorages and splices	14
-	3.2.1	.4 Lo	bad transfer to the structure	14
ctronic	3.2.1	.5 R	esistance to corrosion	15
ctr	3.2.2	Saf	ety in case of fire	15
ele	3.2.2	.1 R	eaction to fire	15
	3.2.2	.2 R	esistance to fire	15
_	3.3	Asse	ssment methods	15
opy	3.4	Ident	ification	15
S	4		ESSMENT AND VERIFICATION OF CONSTANCY OF PERFORMANCE (HEREINAFTER AVCP) EM APPLIED, WITH REFERENCE TO ITS LEGAL BASE	15
ctronic	4.1	Syste	em of assessment and verification of constancy of performance	15
elec	4.2		P for construction products for which a European Technical Assessment has been	16
	5		INICAL DETAILS NECESSARY FOR THE IMPLEMENTATION OF THE AVCP SYSTEM, AS PROVIDED N THE APPLICABLE EAD	16
pγ	5.1	Task	s for the manufacturer	16
00	5.1.1	Fac	ctory production control	16
nic	5.1.2	Dec	claration of performance	16
ctrol	5.2	Task	s for the notified product certification body	17
ec.	5.2.1	Initi	al inspection of the manufacturing plant and of factory production control	17
Φ	5.2.2	Cor	ntinuing surveillance, assessment, and evaluation of factory production control	17
Z	5.2.3		dit-testing of samples taken by the notified product certification body at the nufacturing plant or at the manufacturer's storage facilities	17
copy	ANNE	EXES .		18
0	Anne	x 1	STEEL BAR – NOMINAL DIMENSIONS AND MASS, RIB GEOMETRY	18
electronic	Anne	x 2	STEEL BAR – MECHANICAL-TECHNOLOGICAL CHARACTERISTICS	19
ctr	Anne	x 3	OVERVIEW OF COMPONENTS – TORQUE MOMENTS	20
ele	Anne	x 4	OVERVIEW OF COMPONENTS – MATERIAL SPECIFICATIONS	21
	Anne	x 5	COMPONENTS – HARDNESS	22
	Anne	X 6	SPLICES	23
copy	Anne	x 7	SPLICES WITH CONTACT COUPLER – END ANCHORAGE WITH ANCHOR PIECE	24
00	Anne	x 8	COMPONENTS – ANCHOR NUT AND LOCK NUT, LONG	25
tronic	Anne	x 9	COMPONENTS – LOCK NUT, SHORT AND LOCK NUT, SHORT, CAST	26
tro	Anne	x 10	COMPONENTS – ANCHOR PIECE AND ANCHOR NUT WITH FLANGE	27

ANNEX 11	COMPONENTS - COUPLER, STANDARD AND CONTACT COUPLER	28
ANNEX 12	COMPONENTS - TURNBUCKLE - CHANGE OVER COUPLER AND TENSIONING COUPLER	29
ANNEX 13	COMPONENTS – REDUCING COUPLER AND REDUCING CONTACT COUPLER	30
ANNEX 14	CENTRE SPACING, EDGE DISTANCE, ADDITIONAL BONDED LENGTH	31
ANNEX 15	CENTRE SPACING, EDGE DISTANCE ACCORDING TO CONCRETE STRENGTH CLASS	32
ANNEX 16	CENTRE SPACING, EDGE DISTANCE ACCORDING TO CONCRETE STRENGTH CLASS	33
ANNEX 17	RECOMMENDED OFFSET DISTANCE FOR SPLICES	34
ANNEX 18	CONTENTS OF THE PRESCRIBED TEST PLAN	35
ANNEX 19	AUDIT TESTING	36
ANNEX 20	REFERENCE DOCUMENTS	37
ANNEX 21	REFERENCE DOCUMENTS	38

electronic copy

electronic copv

electronic copy

Remarks

Translations of the European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of the European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of Österreichisches Institut für Bautechnik. Any partial reproduction has to be identified as such.

Specific parts

1 Technical description of the product

1.1 General

The European Technical Assessment¹ – ETA – applies to a kit, the

High strength reinforcing system SAS 670,

comprising the following components.

- Reinforcing bar with hot rolled thread ribs, see Table 1
- End anchorages
 - Anchor piece with anchor nut or lock nut
 - Anchorage end plate
- Splices
 - Torqued standard coupler with lock nuts
 - Contact coupler
 - Turnbuckle with lock nuts
 - Reducing coupler with lock nuts
 - Reducing contact coupler

Table 1 Nominal strength characteristics of the steel bar S 670/800

Nominal diameter	mm	18	22	25	28	30	35	43	50	57.5	63.5	75
Designation	_	18 TR	22 TR	25 TR	28 TR	30 TR	35 TR	43 TR	50 TR	57 TR	63 TR	75 TR
Steel bar S 670/8	800											
Nominal yield strength	N/mm ²	670										
Nominal tensile strengthN/mm²800												

ETA-13/0840 was firstly issued in 2013 as European technical approval with validity from 28.06.2013, converted and amended in 2018 to European Technical Assessment ETA-13/0840 of 28.06.2018, converted 2020 to European Technical Assessment ETA-13/0840 of 23.06.2020, and amended 2021 to European Technical Assessment ETA-13/0840 of 20.12.2021.

Steel bar

1.2 General

The load-bearing element is a hot-rolled and in line heat treated steel bar S 670/800, nominal diameter $\emptyset_s = 18$ to 75 mm, with right-hand thread ribs. The steel is referred to as SAS 670. The steel bar S 670/800 is developed for geotechnical and reinforcement applications.

Table 1 lists the nominal steel bar diameters and Table 2 nominal cross-sectional areas and characteristic forces of the High strength reinforcing system SAS 670. Due to its characteristics, the steel is classified as reinforcing steel but compared to standard reinforcing steel the steel bar features higher strength properties.

End anchorage of the steel bar is achieved with either a torqued anchor piece with additional bonded length or by contact with anchorage end plate.

The steel bars are connected with torqued couplers for tension, compression, and alternating loading or contact couplers for only compression loading.

1.3 Strength characteristics of steel bar

The characteristic strength of the steel bar S 670/800 exceeds the values of common reinforcing steel.

The most important characteristics are

- Nominal diameter..... \emptyset_s = 18, 22, 25, 28, 30, 35, 43, 50, 57.5, 63.5, and 75 mm
- Relative rib area.....f_R ≥ 0.075
- Characteristic yield strength......R_{p0.2} \ge 670 N/mm²
- Characteristic tensile strength......R_m \ge 800 N/mm²
- Elongation at maximum load...... $A_{gt} \ge 5$ %

Table 0	Naminal areas anotional areas and characteristic farmers of the steal her C C70/000
rable z	Nominal cross-sectional areas and characteristic forces of the steel bar S 670/800

	Nominal diameter	Nominal cross- sectional area	Characteristic yield force	Characteristic maximum force
Designation	Øs	As	$A_s \cdot R_{p0.2}$	$A_s \cdot R_m$
	mm	mm²	kN	kN
18 TR	18	254	170	204
22 TR	22	380	255	304
25 TR	25	491	329	393
28 TR	28	616	413	493
30 TR	30	707	474	565
35 TR	35	962	645	770
43 TR	43	1 452	973	1 162
50 TR	50	1 963	1 315	1 570
57 TR	57.5	2 597	1 740	2 077
63 TR	63.5	3 167	2 122	2 534
75 TR	75	4 418	2 960	3 534

The specifications of the steel bar are listed in Annex 1 and Annex 2 and are in accordance or exceed the specifications of Eurocode 2², in particular EN 1992-1-1, Annex C.

1.4 Welding of steel bar

The steel bar is suitable for welding. However, welding is performed according to defined procedures in accordance with EN ISO 17660.

1.5 Bending of steel bar

The steel bars with nominal diameters of $\emptyset_s \le 57.5$ mm may be bent according to Eurocode 2. For specific applications, bending of even larger nominal diameters may be verified.

Anchorages and splices, components

1.6 General

Available components of end anchorages and splices of the steel bars are listed in Annex 3. The material specifications of the components are listed in Annex 4 and the main dimensions in Annex 8 to Annex 13. Materials, material parameters and tolerances of the components are specified in the technical file³ of the European Technical Assessment.

1.7 End anchorages

1.7.1 General

The end anchorage comprises a torqued anchor piece with bursting reinforcement and an additional bonded length, I_v , to reduce slip. End anchorage subjected to only compression loads may also be by direct contact of the steel bar to an anchor end plate in steel.

1.7.2 End anchorage with anchor piece

For nominal diameters 18–63.5 mm, this anchorage comprises an anchor piece with nut. It is assembled for the respective loading according to Annex 7 and tightened to the torque moments listed in Annex 3. The additional bonded length, I_v , according to Annex 14 is observed and considered in the design of the structure.

The anchor piece is shown and the main dimensions are given in Annex 10.

1.7.3 End anchorage with anchor end plate

This anchorage for all nominal diameters is employed for a steel bar subjected to only compression loads. The force is transferred to the anchor end plate in steel by direct contact – end bearing anchorage. The form-fit and force-fit connection is ensured by square cut of the front face of the steel bar with a maximum angle tolerance of \pm 0.5 °. The position of the steel bar is ensured either by means of an anchor nut or lock nut welded onto the anchor end plate or by fastening the steel bar directly onto the anchor end plate.

The end anchorage with anchor end plate is verified according to Eurocode 2 and Eurocode 3.

1.8 Splices

1.8.1 General

The steel bars are connected with couplers. For tensile, compression, and alternate loading, the splice comprises a coupler locked with nuts. For splices subjected to only compression loads, contact couplers are employed.

² Standards and other documents referred to in the European Technical Assessment are listed in Annex 20 and Annex 21.

³ The technical file of the European Technical Assessment is deposited at Österreichisches Institut für Bautechnik.

1.8.2 Splice with standard coupler

For all nominal diameters, this splice comprises a standard coupler and, depending on the loading, two short lock nuts for tensile loading, or two long lock nuts for compressive or alternate loading. The splice is assembled according to Annex 6 and tightened to the torque moment according to Annex 3. See Clause 3.2.1.2 regarding limited slip.

The components of the splice with standard coupler are shown and the main dimensions are given in the following Annexes.

- Standard coupler in Annex 11
- Long lock nut in Annex 8
- Short lock nut and short lock nut cast in Annex 9
- 1.8.3 Splice with contact coupler

Bars of all nominal diameters subjected to only compression loading may be connected with contact couplers. Thereby, the contact coupler ensures the concentric position of both steel bars in the splice.

The form-fit and force-fit contact of the front faces of both steel bars is ensured by square cut of the steel bars with a maximum angle tolerance of \pm 0.5 ° and by hand-tight locking of the steel bars according to Annex 3 – end bearing splice.

A standard coupler according to Clause 1.8.2 can also be used as contact coupler.

The contact coupler is shown and the main dimensions are given in Annex 11.

1.8.4 Splice with turnbuckle

For nominal diameters 18–63.5 mm, this splice is employed for length compensation, where two rigidly placed steel bars with ends in a given co-axial distance are to be jointed.

The turnbuckle comprises a change over coupler and a tensioning coupler and, depending on the loading, two short lock nuts for tensile loading, or two long lock nuts for compressive or alternate loading. The splice is assembled according to Annex 6 and tightened to the torque moment according to Annex 3.

The components of the splice with turnbuckle are shown and the main dimensions are given in the following Annexes.

- Turnbuckle components, i.e. change over coupler and tensioning coupler in Annex 12
- Long lock nut in Annex 8
- Short lock nut and short lock nut cast in Annex 9
- 1.8.5 Splice with reducing coupler

For nominal diameters 18–63.5 mm, this splice is employed to joint two steel bars with different nominal diameters and is appropriate for nominal diameters of the larger steel bar of 22 to 63.5 mm.

The splice comprises a reducing coupler and, depending on the loading, two short lock nuts for tensile loading, or two long lock nuts for compressive or alternate loading. The splice is assembled according to Annex 6 and tightened to the torque moment according to Annex 3.

The components of the splice with reducing coupler are shown and the main dimensions are given in the following Annexes.

- Reducing coupler in Annex 13
- Long lock nut in Annex 8
- Short lock nut and short lock nut cast in Annex 9

1.8.6 Splice with reducing contact coupler

This splice is employed to joint two steel bars with different nominal diameters, subjected to only compression loading, and is appropriate for nominal diameters of the larger steel bar of 22–75 mm. The contact coupler ensures the concentric position of both steel bars in the splice.

The form-fit and force-fit contact of the front faces of both steel bars is ensured by square cut of the bars with a maximum angle tolerance of \pm 0.5 ° and by hand-tight locking of the steel bars according to Annex 3 – end bearing splice.

A reducing coupler according to Clause 1.8.5 can also be used as reducing contact coupler.

The reducing contact coupler is shown and the main dimensions are given in Annex 13.

1.9 Load transfer to the structure

Load transfer to structural concrete via end anchorage with anchor piece according to Clause 1.7.2 is with additional reinforcement – bursting reinforcement. All centre spacings and edge distances have been determined with regard to requirements on load-bearing capacity, depending on the concrete strength class.

- Nominal diameter of steel bar 18-63.5 mm
- Compressive strength of concrete at time of loading $f_{cm, 0, cube 150} \ge 30, 75$, or 95 N/mm²
- Minimum concrete strength class C25/30, C60/75, or C80/95 according to EN 206
- Centre spacing and edge distance of the end anchorages according to Annex 14 to Annex 16
- Additional reinforcement is in ribbed reinforcing steel with a yield strength of $R_e \ge 500 \text{ N/mm}^2$, is centrally arranged to the steel bar, and conforms to Annex 14 to Annex 16
- To reduce slip, an additional bonded length, I_v , according to Annex 14 is observed.

Small differences in load, induced by load transfer e.g. through slabs or by creep redistributions are covered by bond stresses and do not require end anchorages.

See Clause 1.7.3 for load transfer with anchor end plate.

2 Specification of the intended use in accordance with the applicable European Assessment Document (hereinafter EAD)

2.1 Intended use

The High strength reinforcing system SAS 670 is intended to be installed in buildings and civil engineering structures featuring the following characteristics.

- In-situ concrete and precast elements
- Concrete strength classes from C25/30 to C80/95
- Geometric reinforcement ratio up to 20 %, observing the required spacing and concrete cover of the steel bars
- Reinforced concrete members designed to transfer static, predominantly static, and accidental loads.
- Reinforced concrete compression members, e.g. columns and walls
- Reinforced concrete members to transfer tensile loads from static and predominantly static actions observing following constraints according to Eurocode 2.
 - Either the yield strength is limited to $\leq 600 \text{ N/mm}^2$ or
 - For bending with significant axial compression, the serviceability limit states are verified
- Reinforced concrete members to transfer tensile loads from accidental actions

2.2 Assumptions

2.2.1 General

Concerning product packaging, transport, storage, maintenance, replacement, and repair it is the responsibility of the manufacturer to undertake the appropriate measures and to advise his clients on transport, storage, maintenance, replacement, and repair of the product as he considers necessary.

2.2.2 Packaging, transport and storage

Advice on packaging, transport, and storage includes.

- Temporary protection of steel bars and other components in order to prevent damaging corrosion during transportation from the production site to the job site. Light surface rust is acceptable.
- Transportation, storage, and handling of steel bars and other components in a manner as to avoid damage by mechanical or chemical impact
- Protection of steel bars and other components from moisture

2.2.3 Design

2.2.3.1 General

In general, for reinforced concrete members subjected to predominantly compressive loading, the reinforcement specifications of Eurocode 2 apply. In addition, the following items are observed.

- The stress-strain curves, both under tension and compression, of the steel bars are identical.
- In order to fully exploit the steel's compressive yield strength, creep and shrinkage redistribution may be taken into account. The respective loading history is considered.
- Verifications take increased deformations due to redistribution into account. In particular, the increased deformations are considered for stability verifications.
- The compressive strain limits of concrete for serviceability limit state are verified.
- Characteristic and design bond strength, dependent on concrete strength class, are listed in Table 3.
- Moment redistributions are applicable only if exact verifications are carried out.
- Stress range in fatigue tests are given in Table 4.
- See Clause 3.2.1.2 regarding limited slip at anchorages and splices.
- For structural members subjected to bending and tensile loading, the following assumptions are applied according to Eurocode 2
 - The characteristic yield strength to transfer tension loads is limited to $f_{yk} \le 600 \mbox{ N/mm}^2$ in the ultimate limit state.
 - The required verifications are carried out for the serviceability limit state.
 - Crack widths are verified and, if required, additional skin reinforcement is installed to facilitate crack width control.
 - For exceptional load cases, limitation of the yield strength is not required.

	Concrete strength class										
	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	C55/67	C60/75	C80/95		
τ_{k}	5.7	6.2	6.7	7.2	7.6	8.1	8.5	8.8	10.2		
τ_{d}	3.8	4.2	4.5	4.8	5.1	5.4	5.6	5.9	6.8		

Table 3 Bond strength in N/mm²

Table 4Stress range in fatigue test

Nominal diameter		Fatigue strength			
Øs	Bar without component	Splice, end anchorage with anchor piece			
mm	N/mm ²	N/mm ²			
18–43	150	55			
50–63.5	120	55			
75	100	40 ¹⁾			

¹⁾ Only splice

2.2.4 Detailing

If not stated otherwise, the detailing provisions of Eurocode 2 apply.

- The geometric reinforcement ration does not exceed 20 %.
- Anchorage of steel bars nominal diameter 18–63.5 mm is obtained by end anchorages with anchor pieces, see Clause 1.7.2 and Clause 1.9. For steel bars of all nominal diameters subjected to only compression loads, anchorages with anchor end plates in steel are likewise available, see Clause 1.7.3.
- Percentage of coupled steel bars with contact splices in one cross section may be 100 %.
 However, for reasons of practicability, the splices should be staggered as specified in Annex 17 and percentage of contact splices per cross section reduced to ~ 50 %.
- Percentage of coupled steel bars with splices with torqued coupler in one cross section may be 100 %. For tensile loading, the splices should be staggered as specified in Annex 17 and percentage of splices per cross section reduced to ~ 50 %.
- Minimum diameter and the maximum centre spacing of the stirrup reinforcement may be taken according to Table 5. Above and below floor slabs or beams, stirrup spacing is reduced accordingly.
- Steel bars with a nominal diameter of $\emptyset_s > 57.5$ mm are not bent.
- Centre and edge distances of end anchorages with anchor piece are given in Annex 14 to Annex 16.

Table 5	Minimum stirrup diameter	s and maximum sti	rrup spacing in mm
---------	--------------------------	-------------------	--------------------

Nominal diameter	Øs	18	22	25	28	30	35	43	50	57.5	63.5	75
Minimum stirrup diameter	d _{Bü}	6	6	8	8	8	10	10	12	12	14	14
Maximum centre spacing of stirrups		$\min \begin{cases} b_{min} \\ 20 \cdot \varnothing_s \\ 400 \end{cases}$			$min \begin{cases} b_{min} \\ 400 \end{cases}$				$min \begin{cases} b_{min} \\ 450 \end{cases}$			

Where

b_{min}......Minimum dimension of cross section of the reinforced concrete member

2.2.5 Installation

It is assumed that the product will be installed according to the manufacturer's instructions or – in absence of such instructions – according to the usual practice of the building professionals.

Assembly and installation of the High strength reinforcing system SAS 670 is only carried out by appropriately qualified specialist companies with the required resources and experience in the execution of reinforced concrete works.

For execution, the relevant Eurocodes and EN 13670 are considered. Anchorage of steel bars nominal diameter 18–63.5 mm is obtained by end anchorages with anchor piece. The length of the reinforcement is achieved by connecting the required number of steel bars with couplers. End anchorages and splices are tightened to the specified torque moments, see Annex 3, and minimum engagement depths are observed. End bearing anchorages with anchor end plates in steel and end bearing splices with contact couplers are available for steel bars of all nominal diameters subjected to only compression loading.

2.3 Assumed working life

The European Technical Assessment is based on an assumed working life of the High strength reinforcing system SAS 670 of 100 years, provided that the High strength reinforcing system SAS 670 is subject to appropriate installation, use, and maintenance, see Clause 2.2.

In normal use conditions, the real working life may be considerably longer without major degradation affecting the basic requirements for construction works⁴.

The indications given as to the working life of the construction product cannot be interpreted as a guarantee, neither given by the product manufacturer or his representative nor by EOTA nor by the Technical Assessment Body, but are regarded only as a means for expressing the expected economically reasonable working life of the product.

electronic copv

The real working life of a product incorporated in a specific works depends on the environmental conditions to which that works are subject, as well as on the particular conditions of design, execution, use, and maintenance of that works. Therefore, it cannot be excluded that in certain cases the real working life of the product may also be shorter than the assumed working life.

3 Performance of the product and references to the methods used for its assessment

3.1 Essential characteristics

The performances of the High strength reinforcing system SAS 670 for the essential characteristics are given in Table 6.

N⁰	Essential characteristic	Product performance
	Basic requirement for construction works 1: Mechan	ical resistance and stability
1	Resistance to static load at anchorages and splices	See Clause 3.2.1.1.
2	Slip at anchorages and splices	See Clause 3.2.1.2.
3	Resistance to fatigue at anchorages and splices	See Clause 3.2.1.3.
4	Load transfer to the structure	See Clause 3.2.1.4.
5	Resistance to corrosion	See Clause 3.2.1.5.
Stee	l bar	
6	Shape	See Annex 1.
7	Cross sectional area	See Annex 1.
8	Mass per metre	See Annex 1.
9	Surface geometry	See Annex 1.
10	Weldability	See Clause 1.4.
11	Strength characteristics	See Annex 2.
12	Modulus of elasticity	See Annex 2.
13	Elongation at maximum force	See Annex 2.
14	Bendability	See Annex 2.
15	Resistance to fatigue	See Annex 2.
16	Material	See Annex 4.
17	Bond characteristics	See Table 3.
Nuts	, couplers, and anchor piece	
18	Shape	See Annex 8 to Annex 13.
19	Dimensions	See Annex 8 to Annex 13.
20	Material	See Annex 4.
21	Hardness	See Annex 5.
	Basic requirement for construction works 2: \$	Safety in case of fire
22	Reaction to fire	See Clause 3.2.2.1.
23	Resistance to fire	See Clause 3.2.2.2.
	A	

Table 6 Essential characteristics and performances of the product

N⁰	Essential characteristic	Product performance						
	Basic requirement for construction works 3: Hygiene,	health, and the environment						
	– No characteristic assessed. —							
	Basic requirement for construction works 4: Safet	y and accessibility in use						
24	Same as for Basic requirement for construction works 1	_						
	Basic requirement for construction works 5: Pr	otection against noise						
	Not relevant. No characteristic assessed.	_						
	Basic requirement for construction works 6: Energy	economy and heat retention						
	Not relevant. No characteristic assessed.	_						
	Basic requirement for construction works 7: Sustaina	ble use of natural resources						
	No characteristic assessed.							

3.2 Product performance

- 3.2.1 Mechanical resistance and stability
- 3.2.1.1 Resistance to static load at anchorages and splices

The High strength reinforcing system SAS 670 as described in the ETA meets the acceptance criteria of EAD 160011-00-0301, Clause 2.2.1. The characteristic values of yield strength, $R_{e, nom}$, and tensile strength, $R_{m, nom}$, of the steel bar are given Annex 2.

3.2.1.2 Slip at anchorages and splices

The High strength reinforcing system SAS 670 as described in the ETA meets the acceptance criteria of EAD 160011-00-0301, Clause 2.2.2. The characteristic value of yield strength, $R_{e, nom}$, of the steel bar is given Annex 2.

Slip criteria of EAD 160011-00-0301 are met

- For nominal diameter 18–63.5 mm with limited yield strength according to Clause 2.2.3.1 of 600 N/mm² for Option 2 of ISO 15835-1 as well.
- For nominal diameter 75 mm with limited yield strength of 450 N/mm² for Option 1 and Option 2 of ISO 15835-1.
- 3.2.1.3 Resistance to fatigue at anchorages and splices

For resistance to fatigue of anchorages and splices see Table 4.

Fatigue resistance of anchorages and splices was tested and verified with an upper force of $0.65 \cdot F_{pk}$, and $2 \cdot 10^6$ load cycles.

3.2.1.4 Load transfer to the structure

The High strength reinforcing system SAS 670 as described in the ETA meets the acceptance criteria of EAD 160011-00-0301, Clause 2.2.5. The characteristic values of yield strength, $R_{e, nom}$, and tensile strength, $R_{m, nom}$, of the steel bar are given Annex 2.

Conformity with the stabilisation and crack width criteria specified for the load transfer test was verified to a force level of $0.65 \cdot A_s \cdot R_{e, nom}$.

ectronic copv

3.2.1.5 Resistance to corrosion

The corrosion protection of the High strength reinforcing system SAS 670 is ensured by an appropriate concrete cover.

3.2.2 Safety in case of fire

3.2.2.1 Reaction to fire

The performance of components made of steel is Class A1 without testing.

3.2.2.2 Resistance to fire

Fire resistance of the structure is attained by appropriate dimensions of the cross section of the structure and appropriate axis distance of the steel bar from the nearest surface exposed to fire.

3.3 Assessment methods

The assessment of the essential characteristics in Clause 3.1 of the High strength reinforcing system SAS 670 for the intended use and in relation to the requirements for mechanical resistance and stability, safety in case of fire, and safety and accessibility in use in the sense of the basic requirements for construction works № 1, 2, and 4 of Regulation (EU) № 305/2011 has been made in accordance with EAD 160011-00-0301, Kit for reinforced concrete members with high strength reinforcing steel but limited tensile utilisation.

3.4 Identification

The European Technical Assessment for High strength reinforcing system SAS 670 is issued on the basis of agreed data that identify the assessed product⁵. Changes to materials, to composition, or to characteristics of the product, or to the production process could result in these deposited data being incorrect. Österreichisches Institut für Bautechnik should be notified before the changes are introduced, as an amendment of the European Technical Assessment is possibly necessary.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

4.1 System of assessment and verification of constancy of performance

According to Commission Decision 97/597/EC, the system of assessment and verification of constancy of performance to be applied to the High strength reinforcing system SAS 670 is System 1+. System 1+ is detailed in Commission Delegated Regulation (EU) № 568/2014 of 18 February 2014, Annex, point 1.1, and provides for the following items.

- (a) The manufacturer shall carry out
 - (i) factory production control;
 - (ii) further testing of samples taken at the manufacturing plant by the manufacturer in accordance with the prescribed test plan⁶.
- (b) The notified product certification body shall decide on the issuing, restriction, suspension or withdrawal of the certificate of constancy of performance of the construction product on the basis of the outcome of the following assessments and verifications carried out by that body
 - (i) an assessment of the performance of the construction product carried out on the basis of testing (including sampling), calculation, tabulated values or descriptive documentation of the product;
 - (ii) initial inspection of the manufacturing plant and of factory production control;

The technical file of the European Technical Assessment is deposited at Österreichisches Institut für Bautechnik.

The prescribed test plan has been deposited with Österreichisches Institut für Bautechnik and is handed over only to the notified product certification body involved in the procedure for the assessment and verification of constancy of performance. The prescribed test plan is also referred to as control plan.

- (iii) continuing surveillance, assessment, and evaluation of factory production control;
- (iv) audit-testing of samples taken by the notified product certification body at the manufacturing plant or at the manufacturer's storage facilities.

4.2 AVCP for construction products for which a European Technical Assessment has been issued

Notified bodies undertaking tasks under System 1+ shall consider the European Technical Assessment issued for the construction product in question as the assessment of the performance of that product. Notified bodies shall therefore not undertake the tasks referred to in Clause 4.1, point (b) (i).

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

5.1 Tasks for the manufacturer

5.1.1 Factory production control

In the manufacturing plant, the manufacturer establishes and continuously maintains a factory production control. All procedures and specifications adopted by the manufacturer are documented in a systematic manner. Purpose of factory production control is to ensure the constancy of performances of the High strength reinforcing system SAS 670 with regard to the essential characteristics.

The manufacturer only uses raw materials supplied with the relevant inspection documents as laid down in the control plan. The incoming raw materials are subjected to controls by the manufacturer before acceptance. Check of incoming materials includes control of inspection documents presented by the manufacturer of the raw materials.

Testing within factory production control is in accordance with the prescribed test plan. The results of factory production control are recorded and evaluated. The records are presented to the notified product certification body involved in continuous surveillance and are kept at least for ten years after the product has been placed on the market. On request, the records are presented to Österreichisches Institut für Bautechnik.

If test results are unsatisfactory, the manufacturer immediately implements measures to eliminate the defects. Products or components that are not in conformity with the requirements are removed. After elimination of the defects, the respective test – if verification is required for technical reasons – is repeated immediately.

At least once a year the manufacturer audits the manufacturers of the components given in Annex 19.

The basic elements of the prescribed test plan are given in Annex 18.

5.1.2 Declaration of performance

The manufacturer is responsible for preparing the declaration of performance. When all the criteria of the assessment and verification of constancy of performance are met, including the certificate of constancy of performance issued by the notified product certification body, the manufacturer draws up the declaration of performance. Essential characteristics to be included in the declaration of performance for the corresponding intended use are given in Table 6.

5.2 Tasks for the notified product certification body

5.2.1 Initial inspection of the manufacturing plant and of factory production control

The notified product certification body verifies the ability of the manufacturer for a continuous and orderly manufacturing of the High strength reinforcing system SAS 670 according to the European Technical Assessment. In particular, the following items are appropriately considered.

- Personnel and equipment
- Suitability of the factory production control established by the manufacturer
- Full implementation of the prescribed test plan
- 5.2.2 Continuing surveillance, assessment, and evaluation of factory production control

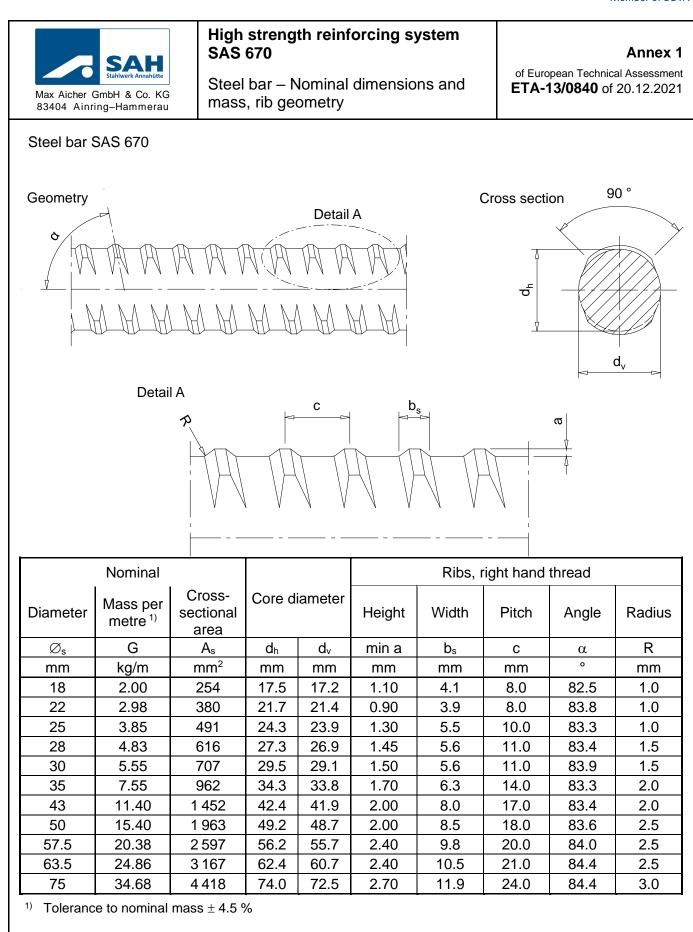
The notified product certification body visits the factory at least once a year for routine inspection. Inspection of factory production control of steel bar is at least twice a year. In particular, the following items are appropriately considered.

- Manufacturing process including personnel and equipment
- Factory production control
- Implementation of the prescribed test plan

Each manufacturer of the components given in Annex 19 is audited at least once in five years. It is verified that the system of factory production control and the specified manufacturing process are maintained, taking account of the prescribed test plan.

The results of continuous surveillance are made available on demand by the notified product certification body to Österreichisches Institut für Bautechnik. When the provisions of the European Technical Assessment or the prescribed test plan are no longer fulfilled, the certificate of constancy of performance is withdrawn by the notified product certification body.

5.2.3 Audit-testing of samples taken by the notified product certification body at the manufacturing plant or at the manufacturer's storage facilities


During surveillance inspections, the notified product certification body takes samples of components of the High strength reinforcing system SAS 670 for independent testing. For the most important components, Annex 19 summarises the minimum procedures performed by the notified product certification body.

Issued in Vienna on 20 December 2021 by Österreichisches Institut für Bautechnik

The original document is signed by:

Rainer Mikulits Managing Director

High strength reinforcing system SAS 670

Steel bar – Mechanical-technological characteristics

Annex 2

of European Technical Assessment **ETA-13/0840** of 20.12.2021

Steel bar SAS 670

	Characterist	ics and requirements			
	Nominal	Characteris	tic		
	diameter	Yield force		Ultim	ate force
	Øs	F _e			F _m
	mm	kN			kN
	18	170			204
	22	255			304
	25	329			393
1	28	413			493
	30	474			565
	35	645			770
	43	973		1	162
	50	1 315		1	570
	57.5	1 740		2	2 077
	63.5	2 122		2	2 534
	75	2 960		65	3 534
2	Characterist	ic yield strength 1), 2)	R _{e, nom}	N/mm ²	670
3	Characterist	ic tensile strength 1)	$R_{m, nom}$	N/mm ²	800
4	Ratio		$\frac{R_{m}}{R_{e}}$	_	≥ 1.10
	Elongation a	t maximum load following			

 $\emptyset_s = 18-43 \text{ mm}$

 $\emptyset_s = 75 \text{ mm}$

¹⁾ 5%-fractile

 $A_{gt} = A_g + \frac{R_m}{E} \cdot 100^{3}$

and N = $2 \cdot 10^6$ cycles

Suitability for bending

Suitability for welding

Stress range in fatigue test

Relative rib area

²⁾ Yield strength R_e corresponds to $R_{p0.2}$, 0.2 % proof strength

Upper stress level $\sigma_{max} = 0.7 \cdot R_{e, nom}$ $\varnothing_s = 50-63.5 \text{ mm}$

³⁾ Modulus of Elasticity E ~ 200 000 N/mm² A_g as plastic extension at maximum force

5

6

7

8

9

≥ 5.0

 ≥ 0.075

150

120

100

 $arnothingspace{-0.5mm}{\text{mm}}$

 $\varnothing_s = 18-75 \text{ mm}$

%

N/mm²

N/mm²

N/mm²

Agt

 f_R

 $2 \cdot \sigma_A$

High strength reinforcing system SAS 670

Overview of components Torque moments Annex 3

of European Technical Assessment **ETA-13/0840** of 20.12.2021

Designati		Nominal diameter \varnothing_s of steel bar in mm											
Component	Number	Pos.	18	22	25	28	30	35	43	50	57.5	63.5	75
Anchor nut													
	TR 2002-Ø	(1)	•	•	•	•	•	•	•	•	•	•	
Lock nut, long	TR 2003-Ø	2	•	•	•	•	•	•	•	•	•	•	•
Lock nut, short	TR 2040-∅	3	•	•	•	•	•	•	•	•	•	•	•
Lock nut, short, cast	TR 2040-∅ C	4	•	•	•	•	•	•	•	•	•	•	
Anchor piece	TR 2073-Ø	5	•	•	•	•	•	•	•	•	•	•	
Anchor nut with flange	TR 2163-Ø	6	•	•	•	•	•	•	•	•	•	•	
Coupler, standard	TR 3003-Ø	7	•	•	•	•	•	•	•	•	•	•	•
Contact coupler	TR 3006-∅ cast TR 3006-∅ C	8	•	•	•	•	•	•	•	•	•	•	•
Change over coupler	TR 3013-Ø	9	•	•	•	•	•	•	•	•	•	•	
Tensioning coupler	TR 3014-Ø	10	•	•	•	•	•	•	•	•	•	•	
Reducing coupler	TR 3102-Ø	(11)	—	•	•	•	•	•	•	•	•	•	—
Reducing contact coupler	TR 3106-Ø	(12)		•	•	•	•	•	•	•	•	•	•
Key • Component ava	ilable — (Compo	nent no	t avail	able								
End anchorage and						То	rque n	nomer	nt in kN	١m			
	Øs	18	22	25	28	30	35	43	50	57.5	63.5	75	
Splice with locked couple	r ¹⁾		0.6	0.8	1.0	1.4	1.6	3.0	6.0	9.0	12.0	16.0	25.0
End anchorage with anchor piece 0.6 0.8 1.0 1.4 1.6 3.0 6.0 9.0 12.0 13.0 —							—						
Splice with contact couple	er		0.2	0.2	0.2	0.2	0.25	0.27	0.31	0.35	0.35	0.50	0.50
¹⁾ For reducing coupler, the	e torque mome	nt of th	e small	er ste	el bar a	pplies							

High strength reinforcing system SAS 670

Overview of components Material specifications Annex 4

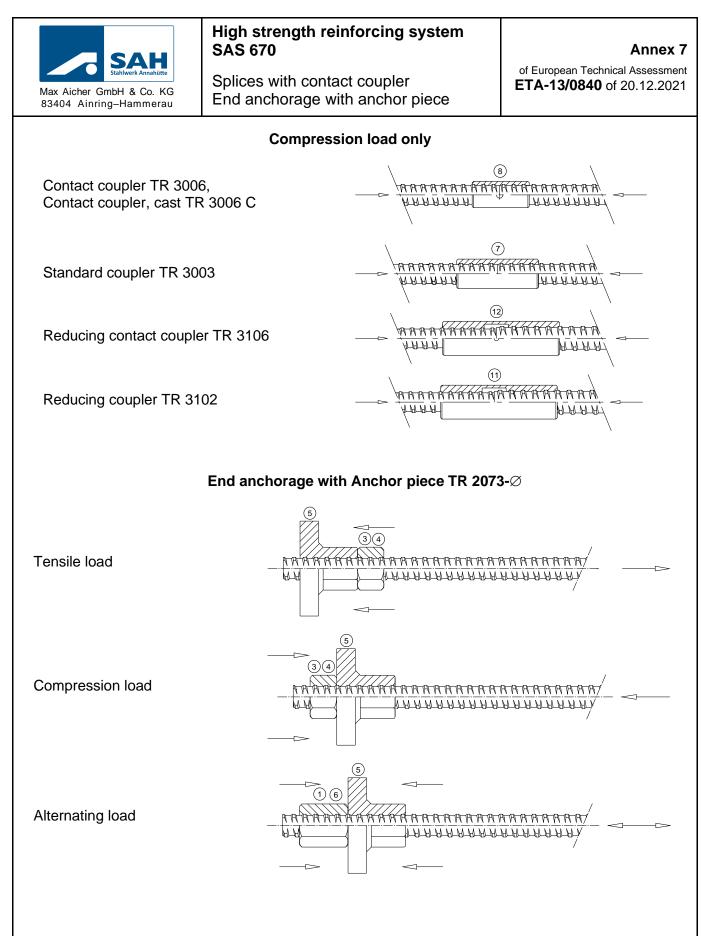
of European Technical Assessment **ETA-13/0840** of 20.12.2021

Component		Standard or Specification
SAS 670/800	Steel bar	Steel, Annexes 1 and 2
TR 2002	Anchor nut Ø 18, 22, 25, 28, 30, 35 and 43 mm Ø 50, 57.5, and 63.5 mm	EN 10277 EN 10210-1
TR 2163	Anchor nut with flange Ø 18, 22, 25, 28, 30, 35, 43, 50, 57.5, and 63.5 mm	EN 10293
TR 2073	Anchor piece Ø 18, 22, 25, 28, 30, 35, 43, 50, 57.5, and 63.5 mm	EN 10293
TR 2003	Lock nut, long Ø 18, 22, 25, 28, 30, 35 and 43 mm Ø 18, 22, 25, 28, 30, 35, 43, 50, 57.5, and 63.5 mm Ø 50, 57.5, and 63.5 mm Ø 75 mm	EN 10277 EN 683-2 EN 10210-1 EN 683-2
TR 2040	Lock nut, short Ø 18, 22, 25, 28, 30, 35 and 43 mm Ø 18, 22, 25, 28, 30, 35, 43, 50, 57.5, and 63.5 mm Ø 50, 57.5, and 63.5 mm Ø 75 mm	EN 10277 EN 683-2 EN 10210-1 EN 683-2
TR 2040 C	Lock nut, short, cast Ø 18, 22, 25, 28, 30, 35, 43, 50, 57.5, and 63.5 mm	EN 10293
TR 3003	Coupler, standard Ø 18, 22, 25, 28, 30, and 35 mm Ø 43, 50, 57.5, and 63.5 mm Ø 75 mm	EN 10025-2 EN 10210-1 EN 683-2
TR 3006	Contact coupler Ø 18, 22, 25, 28, 30, 35, and 43 mm Ø 50, 57.5, 63.5, and 75 mm	EN 10025-2 EN 10210-1
TR 3006 C	Contact coupler, cast Ø 18, 22, 25, 28, 30, 35, 43, 50, 57.5, 63.5, and 75 mm	EN 10293
TR 3013	Change over coupler Ø 18, 22, 25, 28, 30, and 35 mm Ø 43, 50, and 57.5 mm Ø 63.5 mm	EN 10277 EN 10025-2 EN 683-2
TR 3014	Tensioning coupler Ø 18, 22, 25, 28, 30, and 35 mm Ø 43, 50, and 57.5 mm Ø 63.5 mm	EN 10277 EN 10025-2 EN 683-2
TR 3102	Reducing coupler Ø 22, 25, 28, 30, 35, 43, 50, and 57.5 mm Ø 63.5 mm	EN 10025-2 EN 683-2
TR 3106	Reducing contact coupler Ø 22, 25, 28, 30, 35, 43, 50, 57.5, 63.5, and 75 mm	EN 10025-2
	Additional reinforcement	Ribbed reinforcing steel, $R_e \ge 500 \text{ N/mm}^2$

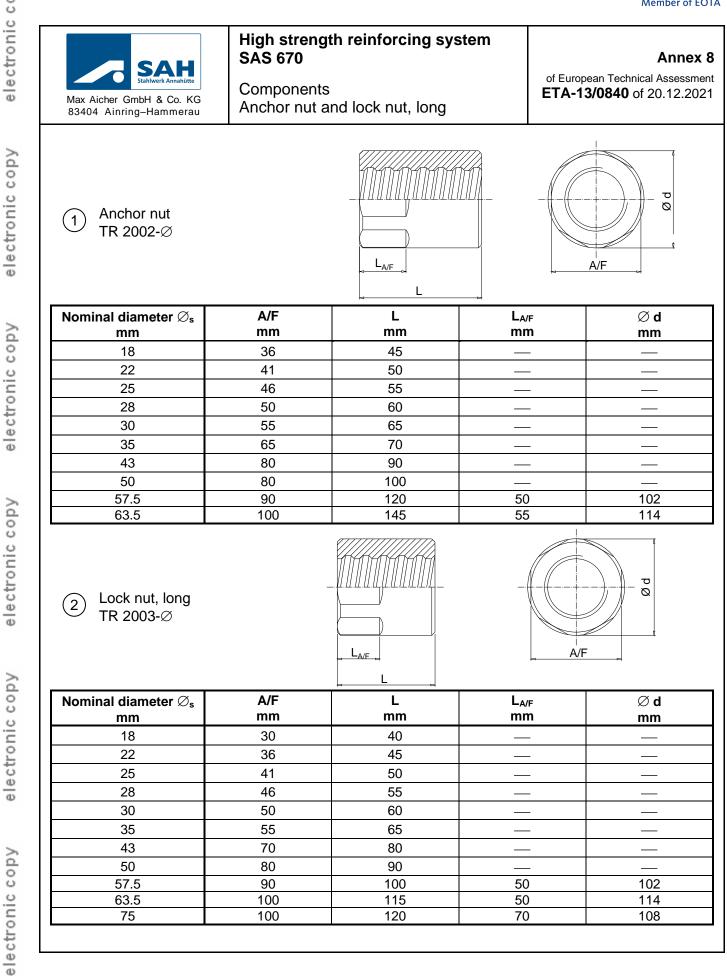
High strength reinforcing system SAS 670

Components – Hardness

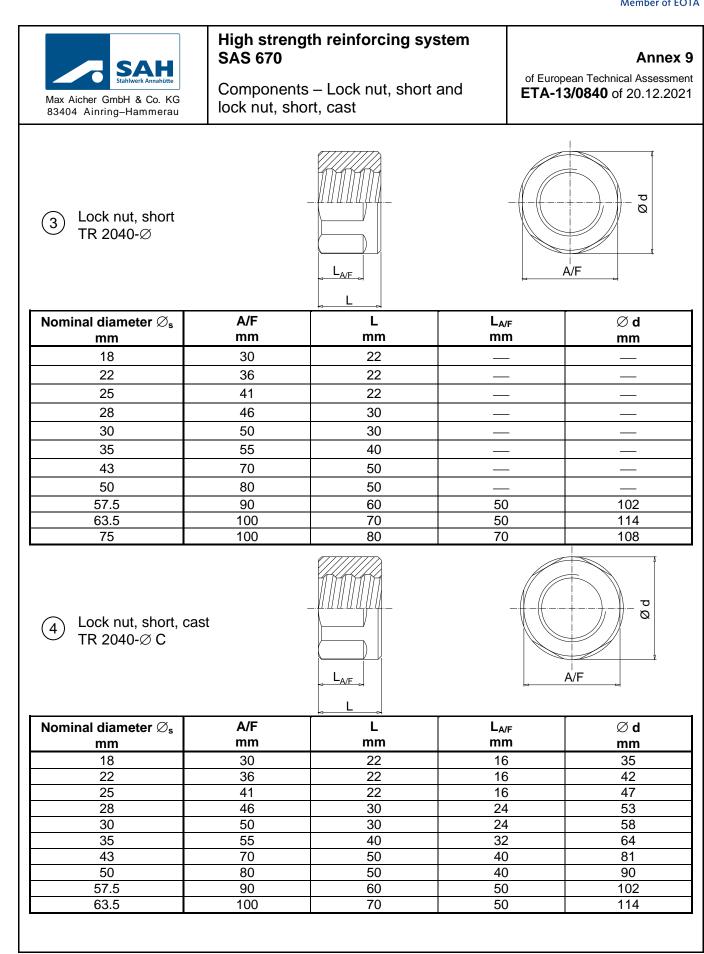
Annex 5


of European Technical Assessment **ETA-13/0840** of 20.12.2021

Component		Hardness
TR 2002	Anchor nut Ø 18, 22, 25, 28, 30, 35, 43, 50, 57.5, and 63.5 mm	≥ 140 HBW
TR 2163	Anchor nut with flange Ø 18, 22, 25, 28, 30, 35, 43, 50, 57.5, and 63.5 mm	≥ 193 HBW
TR 2073	Anchor piece Ø 18, 22, 25, 28, 30, 35, 43, 50, 57.5, and 63.5 mm	≥ 193 HBW
TR 2003	Lock nut, long Ø 18, 22, 25, 28, 30, 35, 43, 50, 57.5, and 63.5 mm Ø 75 mm	≥ 140 HBW ≥ 340 HBW
TR 2040	Lock nut, short Ø 18, 22, 25, 28, 30, 35, 43, 50, 57.5, and 63.5 mm Ø 75 mm	≥ 140 HBW ≥ 340 HBW
TR 2040 C	Lock nut, short, cast Ø 18, 22, 25, 28, 30, 35, 43, 50, 57.5, and 63.5 mm	≥ 193 HBW
TR 3003	Coupler, standard Ø 18, 22, 25, 28, 30, 35, 43, 50, 57.5, and 63.5 mm Ø 75 mm	≥ 140 HBW ≥ 340 HBW
TR 3006	Contact coupler Ø 18, 22, 25, 28, 30, 35, 43, 50, 57.5, 63.5, and 75 mm	≥ 140 HBW
TR 3006 C	Contact coupler, cast Ø 18, 22, 25, 28, 30, 35, 43, 50, 57.5, 63.5, and 75 mm	≥ 193 HBW
TR 3013	Change over coupler ∅ 18, 22, 25, 28, 30, and 35 mm ∅ 43, 50, and 57.5 mm ∅ 63.5 mm	≥ 140 HBW ≥ 133 HBW ≥ 252 HBW
TR 3014	Tensioning coupler ∅ 18, 22, 25, 28, 30, and 35 mm ∅ 43, 50, and 57.5 mm ∅ 63.5 mm	≥ 140 HBW ≥ 133 HBW ≥ 252 HBW
TR 3102	Reducing coupler Ø 22, 25, 28, 30, 35, 43, 50, and 57.5 mm Ø 63.5 mm	≥ 140 HBW ≥ 252 HBW
TR 3106	Reducing contact coupler Ø 22, 25, 28, 30, 35, 43, 50, 57.5, 63.5, and 75 mm	≥ 133 HBW



Max Aicher GmbH & Co. KG 83404 Ainring-Hammerau	High SAS (Splice	670	ngth	reinf	orcir	ng sy	/sten	n				bean ⁻ 3/08		nical A	Asses	
			Т	ensile	load	1										
Coupler, standa	rd TR 30	003					Re	duc	ing	coup	oler	TR 3	3102	2		
(3)(4) (7)	(4)(3)	3)					(3)($\overline{4}$		(11)		(4)	(3))		
амананааа 		UN N N			4	1999 1997			IN P	 1	<u>TATA</u>			TA A LU U		
Øs	mm	18	22	25	28	30	35	43	3	50	57.5	63	8.5	75	٦	
Min. engagement depth	mm	50	55	65	70	75	90	10	0 1	05	125	15	50	130		
349 10		•	essio	on and	,	5 mm	mm mm ng lo	65	35 70	40 4 75 8	15 50 30 99) 55 5 100	60 120	-	75 145	80 145
Coupler, standa	rd TR 3	003					Re	duc	ing		oler	TR 3		2		
(2) (7)) PARA JUUR		Δ	<€	ARR - YLLL		K M P	ŔŔ		MM			A A L U U		C
Øs	mm	18	22	25	28	30	35	43		50	57.5	63	.5	75]	
Min. engagement depth	n mm	50	55	65	70	75	90	10) 1	05	125	15	50	130		
Furnbuckel TR 3105 compr	ising ch L1	ange	over	coup	er TF Øs L1	R 301	3 anc mm	18	22		28 30) 35	43	50	4 57.5 125	



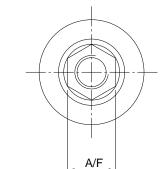
(5)

SAH Stahlwerk Annahütte	

Max Aicher GmbH & Co. KG

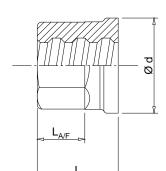
83404 Ainring-Hammerau

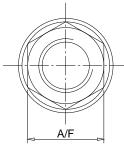
Anchor piece


TR 2073-Ø

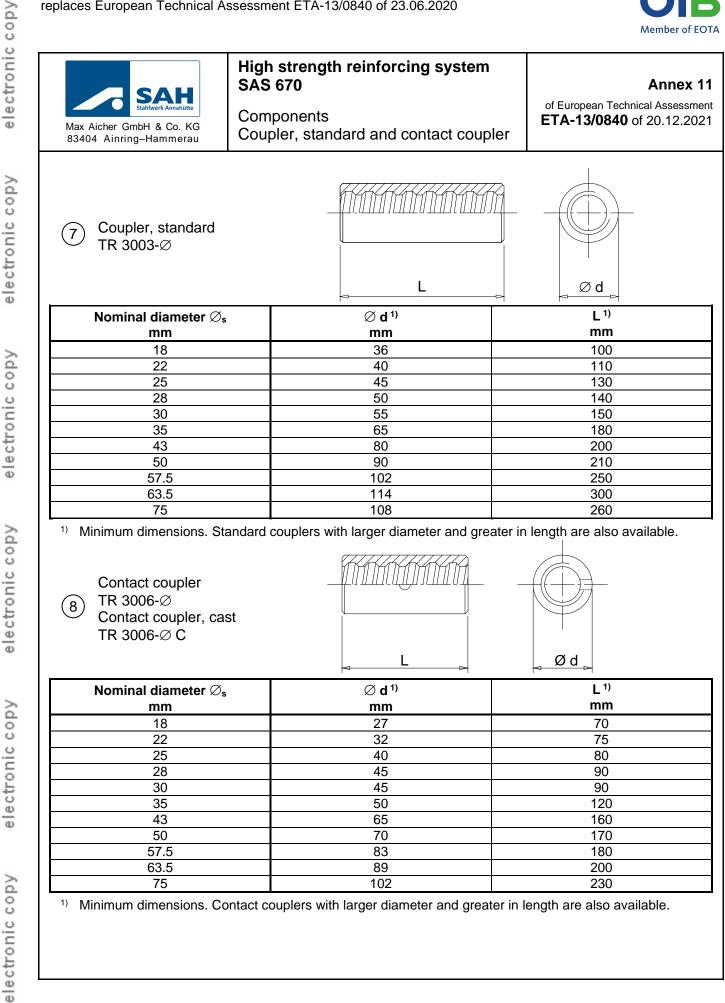
High strength reinforcing system SAS 670

Components – Anchor piece and anchor nut with flange


Annex 10


of European Technical Assessment **ETA-13/0840** of 20.12.2021

рØ


			A/F
Nominal diameter \varnothing_{s} mm	A/F mm	L mm	∅ d mm
18	32	35	55
22	36	45	65
25	41	50	75
28	46	55	85
30	50	60	90
35	60	70	105
43	70	85	130
50	80	100	150
57.5	90	115	175
63.5	100	125	190

Nominal diameter \varnothing_s	A/F	arnothing d	L	L _{A/F}
mm	mm	mm	mm	mm
18	36	42	45	34
22	41	47	50	38
25	46	53	55	40
28	50	58	65	50
30	55	64	65	50
35	65	75	70	53
43	80	92	90	63
50	80	92	100	75
57.5	90	102	120	95
63.5	100	114	145	117

A/F

mm

41

46

55

60

65

80

90

83404 Ainring-Hammerau

TR 3013-Ø

Nominal diameter \emptyset_s

mm

18

22

25

28

30

35

43

50

57.5

63.5

TR 3014-Ø

Tensioning coupler

Change over coupler

High strength reinforcing system **SAS 670**

Components - Turnbuckle - Change over coupler and tensioning coupler

ΜΜΠ

 L_{M}

Lw

mm

60

65

70

80

95

100

115

 L_{W}

Annex 12

of European Technical Assessment ETA-13/0840 of 20.12.2021

Lм

mm

45

50

55

60

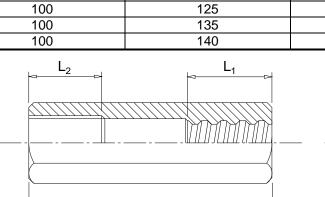
70

75

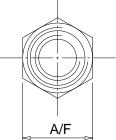
90

100

100

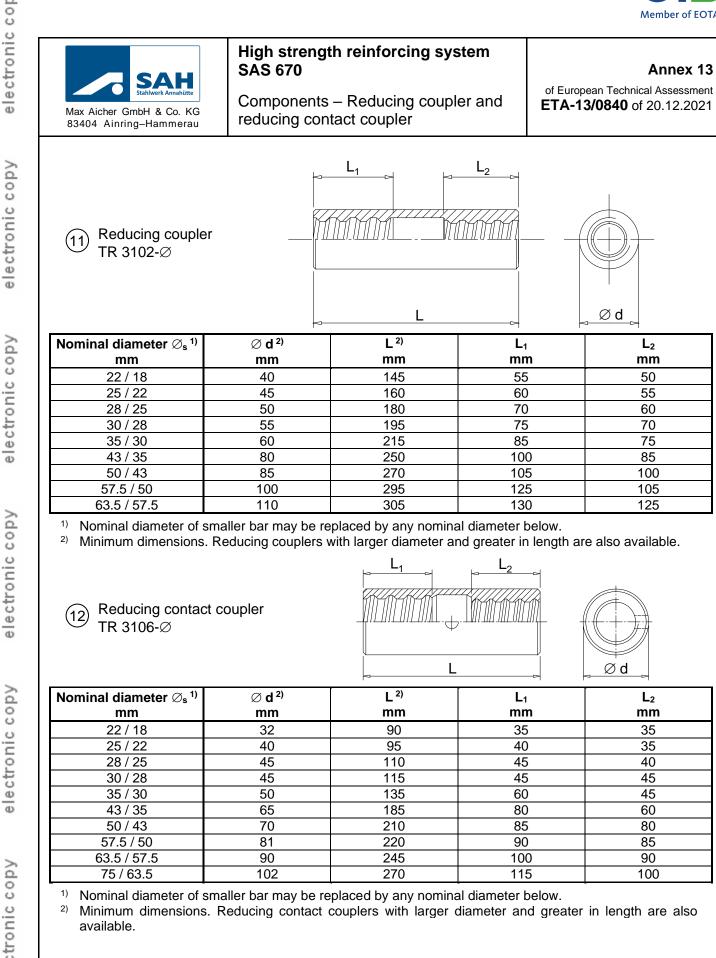

105

A/F

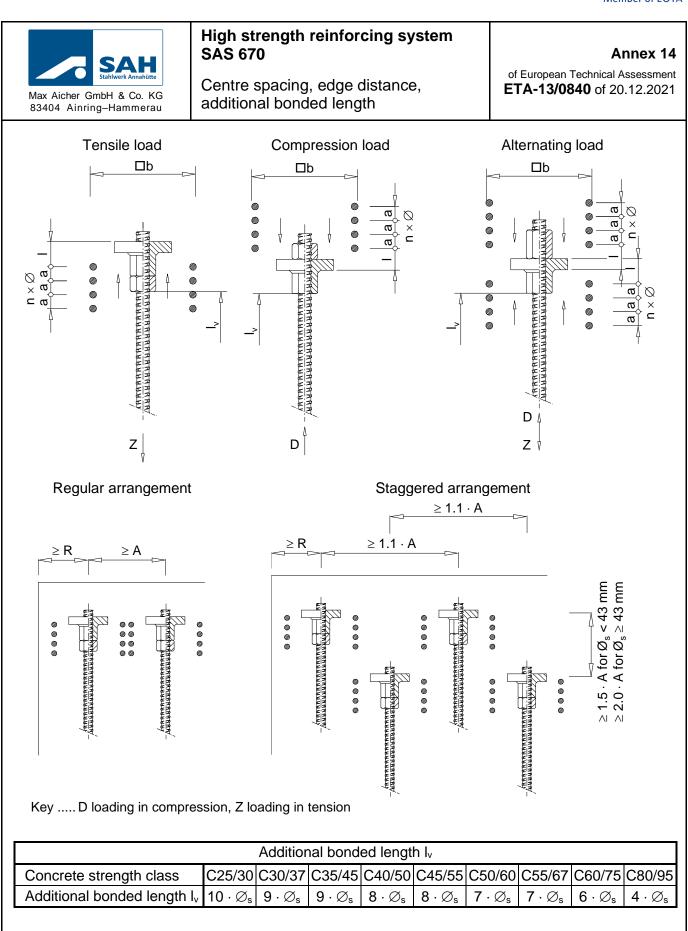

(9)

electronic copy

(10)



L



	1-		-	
Nominal diameter \varnothing_{s} mm	A/F mm	L mm	L₁ mm	L ₂ mm
18	41	145	50	45
22	46	160	55	50
25	55	175	60	55
28	60	190	65	60
30	65	215	70	65
35	80	230	75	75
43	90	280	100	90
50	100	300	100	100
57.5	100	345	125	100
63.5	100	365	140	105

High strength reinforcing system SAS 670

Centre spacing, edge distance according to concrete strength class

Annex 15

of European Technical Assessment **ETA-13/0840** of 20.12.2021

	Concrete strength class ≥ C25/30										
Steel bar	Centre spacing 1)	Edge distance ²⁾		Additio	nal reinfor	cement ³⁾					
Øs	А	R	n	Ø	b	а	I				
mm	mm	mm		mm	mm	mm	mm				
18	200	90 + c	2	8	180	70	125				
22	250	115 + c	4	8	230	60	70				
25	280	130 + c	4	10	260	70	60				
28	310	145 + c	5	10	290	60	60				
30	340	160 + c	6	10	320	60	55				
35	390	185 + c	6	12	370	80	60				
43	480	230 + c	8	12	460	70	55				
50	580	280 + c	11	12	560	60	90				
57.5	640	310 + c	13	12	620	60	90				
63.5	710	345 + c	15	12	690	50	105				

	Concrete strength class \ge C60/75										
Steel bar	Steel bar Centre spacing ¹) Edge distance ²) Additional reinforcement ³										
Øs	A	R	n	Ø	b	a					
mm	mm	mm		mm	mm	mm	mm				
18	110	45 + c	2	8	90	80	40				
22	130	55 + c	3	8	110	50	40				
25	150	65 + c	4	8	130	40	40				
28	165	75 + c	5	8	145	40	40				
30	180	80 + c	5	8	160	40	40				
35	205	95 + c	6	8	185	40	40				
43	250	115 + c	8	8	230	40	40				
50	300	140 + c	8	10	280	40	70				
57.5	335	160 + c	6	12	315	55	100				
63.5	360	170 + c	7	12	340	55	115				

¹⁾ Minimum centre spacing of anchorages may be reduced by up to 15 % in one direction, if the centre spacing in the perpendicular direction is increased by the same percentage.

²⁾ c as concrete cover

 $^{3)}$ Ribbed reinforcing steel, $R_e \geq 500 \; N/mm^2$

High strength reinforcing system SAS 670

Centre spacing, edge distance according to concrete strength class

Annex 16

of European Technical Assessment **ETA-13/0840** of 20.12.2021

Concrete strength class ≥ C80/95											
Steel bar	eel barCenter spacing 1)Edge distance 2)Additional reinforcement 3)										
Øs	А	R	n	Ø	b	а	I				
mm	mm	mm		mm	mm	mm	mm				
18	110	45 + c	2	8	90	80	40				
22	130	55 + c	3	8	110	50	40				
25	150	65 + c	4	8	130	40	40				
28	165	75 + c	5	8	145	40	40				
30	180	80 + c	5	8	160	40	40				
35	205	95 + c	6	8	185	40	40				
43	250	115 + c	8	8	230	40	40				
50	300	140 + c	8	10	280	40	70				
57.5	335	160 + c	6	12	315	55	100				
63.5	360	170 + c	7	12	340	55	115				

¹⁾ Minimum centre spacing of anchorages may be reduced by up to 15 % in one direction, if the centre spacing in the perpendicular direction is increased by the same percentage.

²⁾ c as concrete cover

 $^{3)}~$ Ribbed reinforcing steel, $R_e \geq 500~N/mm^2$

	Aicher GmbH 04 Ainring-H		SAS	670	h reinfo				•	Annex fical Assessm
			1 A A A A A A A 4 4 4 4 4 4 4 4 4 4 4 4 4	<u> </u>	• • • • • • • • • • • • • • • • •	ANNA C	RARAF	ананан Стананан		
		- TAA	<u> </u>	ττ #-	RAAAAAA	<u> </u>	<u> </u>	<u>AAAAAAA</u> UUUUUUU	<	
					I ₀					
	1		Solice with	contact co	upler – Of	<u> </u> fset distan	ce la in mn	n		Additiona
Øs mm	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	C55/67	C60/75	C80/95	reinforce ment cm ²
18	400	380	370	360	350	340	335	330	315	0.17
22	445	420	405	395	385	375	365	360	340	0.26
25	475	450	435	420	405	395	390	380	355	0.33
28	510	480	460	445	430	420	410	400	375	0.41
30	530	500	480	465	450	435	425	415	385	0.48
35	585	550	525	505	490	475	465	450	415	0.65
43	675	630	600	575	555	535	525	505	465	0.98
50	750	700	665	635	610	590	575	555	510	1.32
57.5	835	775	735	705	675	645	630	610	555	1.75
63.5	900	835	790	755	720	695	675	650	590	2.13
75	1 025	950	895	850	815	785	755	730	660	2.80
		ARF	8888888 8888888 1998988 1998988 1998888 199888 199888 19988 19988 19988 19988 1997 1997			<u> </u>		тинини тинини	-	
		Ś	Splice with	torqued co	oupler – Ot	ffset distan	ce l₀ in mr	n		Additiona
	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	C55/67	C60/75	C80/95	reinforce ment cm ²
Øs mm	0_0,00		1			200	350	345	325	0.19
	425	400	390	375	365	360				
mm		400 445	390 430	375 415	365 405	360	385	375	355	0.29
mm 18	425		430 460	415 445				375 400	375	0.29 0.37
mm 18 22 25 28	425 470 510 545	445 480 515	430 460 490	415 445 475	405 430 460	390 420 445	385 410 435	400 425	375 395	0.37 0.46
mm 18 22 25 28 30	425 470 510 545 570	445 480 515 535	430 460 490 515	415 445 475 495	405 430 460 475	390 420 445 460	385 410 435 450	400 425 440	375 395 410	0.37 0.46 0.53
mm 18 22 25 28 30 35	425 470 510 545 570 630	445 480 515 535 590	430 460 490 515 565	415 445 475 495 540	405 430 460 475 520	390 420 445 460 505	385 410 435 450 495	400 425 440 480	375 395 410 440	0.37 0.46 0.53 0.72
mm 18 22 25 28 30 35 43	425 470 510 545 570 630 730	445 480 515 535 590 680	430 460 490 515 565 650	415 445 475 495 540 620	405 430 460 475 520 595	390 420 445 460 505 575	385 410 435 450 495 560	400 425 440 480 540	375 395 410 440 495	0.37 0.46 0.53 0.72 1.09
mm 18 22 25 28 30 35 43 50	425 470 510 545 570 630 730 815	445 480 515 535 590 680 755	430 460 490 515 565 650 720	415 445 475 495 540 620 690	405 430 460 475 520 595 660	390 420 445 460 505 575 635	385 410 435 450 495 560 620	400 425 440 480 540 595	375 395 410 440 495 545	0.37 0.46 0.53 0.72 1.09 1.47
mm 18 22 25 28 30 35 43	425 470 510 545 570 630 730	445 480 515 535 590 680	430 460 490 515 565 650	415 445 475 495 540 620	405 430 460 475 520 595	390 420 445 460 505 575	385 410 435 450 495 560	400 425 440 480 540	375 395 410 440 495	0.37 0.46 0.53 0.72 1.09

High strength reinforcing system SAS 670

Contents of the prescribed test plan

Annex 18

of European Technical Assessment **ETA-13/0840** of 20.12.2021

Subject / type of control		Test or control method	Criteria, if any	Minimum number of samples ¹⁾	Minimum frequency of control	
End anchorage,	Static load test 2)	Testing	3)	$\begin{array}{c} 0.2 \ \% \ {}^{4), \ 5)} \\ \geq 2 \ {}^{5)} \end{array}$	continuous	
Splices	Resistance to fatigue 2)	Testing	3)	1 ⁵⁾	continuous	
	Traceability	full				
	Mass per metre, cross-sectional area, surface geometry ⁶⁾	Testing	3)	\geq 3 ⁷)	continuous	
	Weldability	Testing	8)	100 %	continuous	
	Strength characteristics ⁶⁾ $\varnothing_s < 57.5 \text{ mm}$ $\varnothing_s \ge 57.5 \text{ mm}$	Testing	3)	≥ 3 ⁷⁾ ≥ 1 ⁹⁾	continuous	
Steel bar	Elongation at maximum force ⁶⁾ $\emptyset_s < 57.5 \text{ mm}$ $\emptyset_s \ge 57.5 \text{ mm}$	Testing	3)	\geq 3 ⁷⁾ \geq 1 ⁹⁾	continuous	
	Resistance to fatigue	Testing	3)	\geq 5 ¹⁰⁾	continuous	
	Bendability	Testing	3)	≥ 1 ¹¹⁾	continuous	
	Visual inspection ¹²⁾	Checking	3)	100 %	continuous	
	Traceability	full				
Anchor nut, Anchor nut with flange,	Detailed dimensions	Testing	3)	$\begin{array}{c} 0.4 \ \% \ {}^{5), \ 13)} \\ \geq 2 \ {}^{5)} \end{array}$	continuous	
Anchor piece, Contact coupler, Contact coupler, cast,	Hardness	Testing	3)	$\begin{array}{c} 0.1 \%^{5),13)} \\ \geq 2^{5)} \end{array}$	continuous	
Coupler, standard, Lock nut, long,	Material	Checking	14)	100 %	continuous	
Lock nut, short, Lock nut, short, cast, Turnbuckle,	Visual inspection ¹²⁾	Checking	3)	100 %	continuous	
Reducing coupler, Reducing contact coupler	Traceability	full				

¹⁾ For two specified numbers of samples, the higher number applies.

²⁾ Not for end bearing splice with contact coupler and not for end bearing anchorage

³⁾ Conformity with the specifications of the components

⁴⁾ Percentage of produced anchorages or splices per nominal diameter. After 5 years of successful manufacturing the frequency may be reduced to 0.1 %.
 ⁵⁾ For at least 1 nominal diameter. In case of a production of less than 20 items of 1 nominal diameter per year, testing that nominal

⁵⁾ For at least 1 nominal diameter. In case of a production of less than 20 items of 1 nominal diameter per year, testing that nominal diameter is not required. However, all nominal diameters are tested within 5 years.

- ⁶⁾ Assessment of long-term quality level according to EN 10080, clause 8.5.
- ⁷⁾ Per nominal diameter and rolling batch, at least however, as specified in EN 10080, clause 8.1.
- ⁸⁾ Carbon equivalent, CEV, does not exceed the specification of the steel bar.

⁹⁾ Per nominal diameter and rolling batch, at least however, as specified in EN 10080, clause 8.1, with 1 specimen instead of 3 specimens.

¹⁰⁾ Of one nominal diameter. Nominal diameters < 57.5 mm are all tested within 5 years. Nominal diameters ≥ 57.5 mm are represented by one of these nominal diameters, rotating for every 5 years. However, in case of failure, all of these nominal diameters are tested.

¹¹⁾ Bend test and re-bend test per nominal diameter and rolling batch, at least however, as specified in EN 10080, clause 8.1.

- ¹²⁾ Successful visual inspection does not need to be documented.
- ¹³⁾ Percentage of produced component per nominal diameter and batch
- ¹⁴⁾ Checking of relevant certificate, the certificate is an inspection report 3.1 according to EN 10204.
- Traceability full Full traceability of each component to its raw material.

Material	Defined according to technical specification deposited by the supplier
Detailed dimensions	Measuring of all the dimensions and angles according to the specification given in the test plan
Visual inspection	Main dimensions, gauge testing, correct marking or labelling, appropriate performance, surface, fins, kinks, smoothness, corrosion, etc.

High strength reinforcing system SAS 670

Audit testing

Annex 19

of European Technical Assessment **ETA-13/0840** of 20.12.2021

Subject / type of control		Test or control method	Criteria, if any	Minimum number of samples ¹⁾	Minimum frequency of control
End anchorage, Splices	Static load test	Testing	2)	3 ³⁾	Each inspection
	Mass per metre, cross-sectional area, surface geometry	Testing	2)	4)	Each inspection
	Weldability	Testing	5)	4)	Each inspection
Steel bar	Strength characteristics	Testing	2)	4)	Each inspection
	Elongation at maximum force	Testing	2)	4)	Each inspection
	Bendability	Testing / Checking	2)	4)	Each inspection
	Visual inspection	Checking	2)	4)	Each inspection
Anchor nut, Anchor nut with flange, Anchor piece, Lock nut, long,	Detailed dimensions	Testing	2)	3 ⁶⁾	Each inspection
Lock nut, short, Lock nut, short, casted Contact coupler, Contact coupler, cast,	Material	Testing / Checking	2)	3 ⁶⁾	Each inspection
Coupler, standard, Turnbuckle, Reducing coupler, Reducing contact coupler	Visual inspection	Checking	2)	37)	Each inspection

¹⁾ All samples are taken at random and be clearly identified.

²⁾ Conformity with the specifications of the components

³⁾ 1 nominal diameter, all nominal diameters are tested within 5 years.

⁴⁾ According to EN 10080, clause 8.3.1.

⁵⁾ Carbon equivalent, CEV, does not exceed the specification of the steel bar.

⁶⁾ Per component. One nominal diameter is sampled. All nominal diameters are sampled within 5 years.

⁷⁾ Each kind of component for all nominal diameters

Material Defined according to technical specification deposited by the ETA holder at the Notified body

Detailed dimension Measuring of all the dimensions and angles according to the specification given in the test plan

Visual inspection Main dimensions, gauge testing, correct marking or labelling, appropriate performance, surface, fins, kinks, smoothness, corrosion, etc.

	High strength reinforcing system SAS 670	Annex 20				
SAH Stahlwerk Annahütte	SAS 670	of European Technical Assessment				
Max Aicher GmbH & Co. KG 83404 Ainring-Hammerau	Reference documents	ETA-13/0840 of 20.12.2021				
EAD 160011-00-0301	Kit for reinforced concrete members with	high strength reinforcing				
EAD 100011-00-0301	steel but limited tensile utilisation					
EN 206+A2, 03.2021	Concrete – Specification, performance, production and conformity					
Eurocode 2	Eurocode 2 – Design of concrete structure	Eurocode 2 – Design of concrete structures				
EN 1992-1-1, 12.2004 EN 1992-1-1+AC, 11.2010 EN 1992-1-1+A1, 12.2014	and rules for buildings	Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings				
Eurocode 3	Eurocode 3 – Design of steel structures					
EN 10025-2, 08.2019	Hot rolled products of structural steels - Part 2: Technical delivery conditions for non-alloy structural steels					
EN 10080, 05.2005	Steel for the reinforcement of concrete – Weldable reinforcing steel – General					
EN ISO 683-2, 06.2018	Heat-treatable steels, alloy steels and free-cutting steels – Part 2: Alloy steels for quenching and tempering					
EN 10204, 10.2004	Metallic products – Types of inspection documents					
EN 10210-1, 04.2006	Hot finished structural hollow sections of non-alloy and fine grain steels – Part 1: Technical delivery conditions					
EN 10277, 06.2018	Bright steel products – Technical delivery conditions					
EN 10293, 01.2015	Steel castings – Steel castings for general engineering uses					
EN 13670, 12.2009	Execution of concrete structures					
EN ISO 17660-series, 09.2006	Welding – Welding of reinforcing steel					
ISO 15835-1, 04.2009	5835-1, 04.2009 Steels for the reinforcement of concrete – Reinforcement couplers for mechanical splices of bars – Part 1: Requirements					

SAH	High strength reinforcing system SAS 670	Annex 21
Max Aicher GmbH & Co. KG 83404 Ainring-Hammerau	Reference documents	of European Technical Assessment ETA-13/0840 of 20.12.2021
97/597/EC	Commission decision 97/597/EC of 14 J for attesting the conformity of construct Article 20 (2) of Council Directive 89/106/ and prestressing steel for concrete, Offic Communities L 240 of 02 September 199	ction products pursuant to EEC as regards reinforcing ial Journal of the European
305/2011	Regulation (EU) № 305/2011 of the Euro Council of 9 March 2011 laying down ha marketing of construction products Directive 89/106/EEC, OJ L 88 of 4 Apr Commission Delegated Regulation (EU) I 2014, OJ L 157 of 27.05.2014, p. 76 Regulation (EU) № 574/2014 of 21 Fel 28.05.2014, p. 41, and Regulation (EU) 2 Parliament and of the Council of 20 15.06.2019, p. 1	rmonised conditions for the and repealing Council il 2011, p. 5, amended by № 568/2014 of 18 February 6, Commission Delegated bruary 2014, OJ L 159 of 2019/1020 of the European
568/2014	Commission Delegated Regulation (EU) 2014 amending Annex V to Regulation European Parliament and of the Council and verification of constancy of per products, OJ L 157 of 27 May 2014, page	(EU) № 305/2011 of the as regards the assessment formance of construction
	products, 00 L 107 01 27 Way 2014, page	, 10